## Introduction to Spatial Data Processing using FME and Python













**Eulalie** – ETH engineer FME Certified Professional

**David** – Computer engineer FME Certified Professional FME Server certified Professional **Régis** – ETH engineer FME Certified Professional FME Certified Trainer

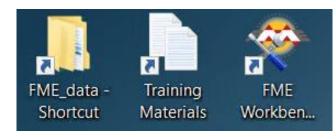
Marion – Student in Topography Intern

## Workshop structure



- 1. Brief FME introduction
- 2. FME Python theory
- 3. Exercises :
  - 1. ACLED exercise
  - 2. PTP exercise
  - 3. Syria exercise
  - 4. DEM exercise

#### Ge¢pol.ch


Get your Remote desktop credentials at :


https://www.geopol.ch/#/en/workspaces/74

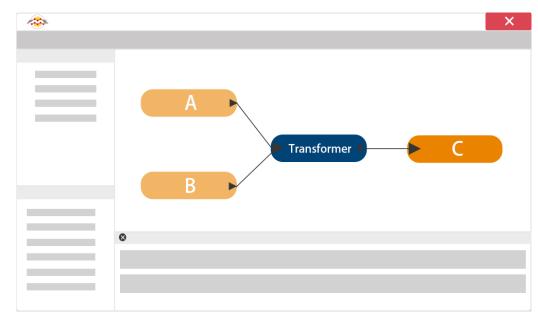
Or download the data :

https://goo.gl/Y5TyhT

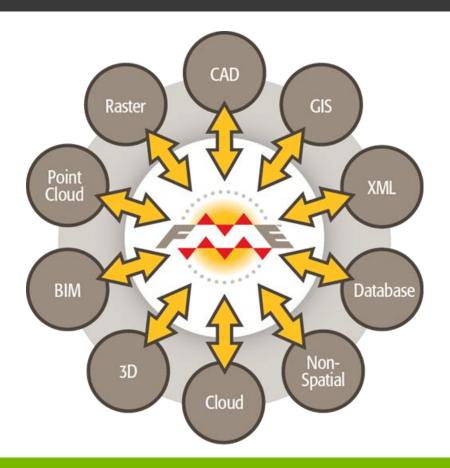
#### On your desktop :






To begin, just a few quick questions :

- Who has never used FME and/or Python before?
- Who has some basic knowledge of FME

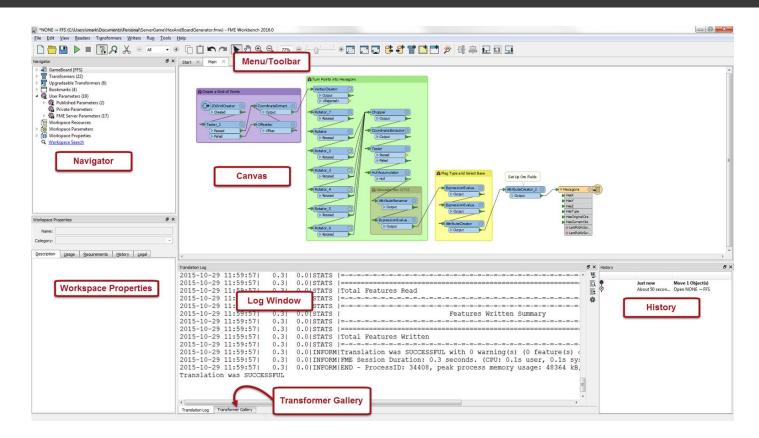

## FME, very briefly...



- Data Interoperability Solution
- Extract, Transform and Load



#### FME, very briefly...






• Rich Data Model

#### FME, very briefly...

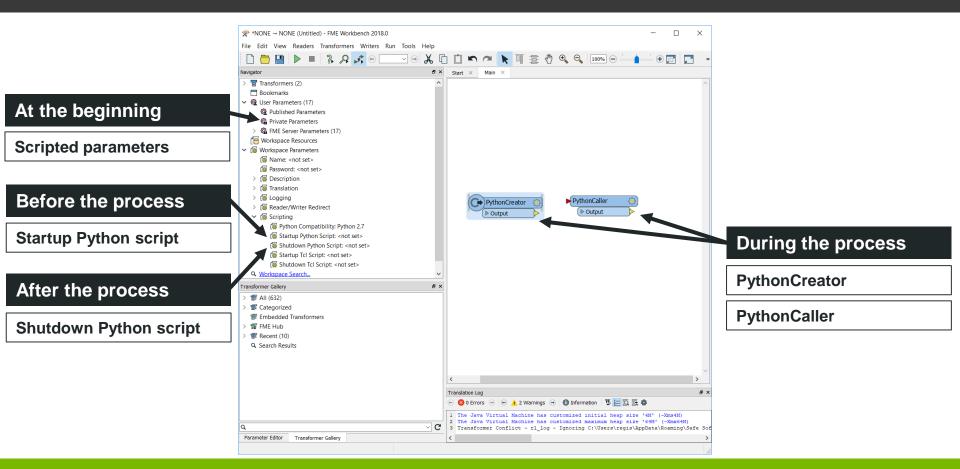








A friendly message from Safe


From the help text of the PythonCaller:

*"Using Python to perform arbitrary operations on features is a powerful aspect of Workbench.* 

However, the logic introduced into a workspace is less visible and can therefore be more difficult to maintain than logic built using Workbench's built-in transformers.

It is recommended that other transformers be used when possible instead of Python scripts."

### Where to write python script?



## PythonCaller

#### **ACLED** data

|                 | Transformer Transformer Name: PythonCaller                                                                            |
|-----------------|-----------------------------------------------------------------------------------------------------------------------|
| aller ()<br>put | Python Script<br>Class or Function to Process Features: FeatureProcessor<br>FME Feature Attribute<br>                 |
|                 | Output Attributes Attributes to Expose: Attributes To Hide: No items selected. Lists to Hide: No Attributes Available |

l⊳ Ou

- Manipulate features using a Python script
- Called once for each feature that passes through
- Supports two models:
  - 1. Procedure interface: quick and simple, for processing one feature at a time.
  - 2. Class interface: powerful and flexible, includes startup and shutdown.
- Example: using the Python module textwrap to word-wrap a long string attribute into an FME list attribute





Armed Conflict Location & Event Data Project (ACLED) is a disaggregated conflict collection, analysis and crisis mapping project.

ACLED collects the dates, actors, types of violence, locations, and fatalities of all reported political violence and protest events across Africa, South Asia, South East Asia and the Middle East.



ACLED data can be accessed via an API

#### https://api.acleddata.com/acled/read?year=@Value(year)

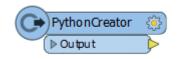
However, it only downloads 500 features. To access the whole dataset, the page argument must be added

https://api.acleddata.com/acled/read?year=@Value(year)&page=@Value(page)





Log into your computer  $\rightarrow$  Read the doc for exercise 1  $\rightarrow$  Explore the FME workspace  $\rightarrow$  Follow the steps to finish the exercise


#### **PythonCreator**

#### Custom ptp reader

#### Ex2 – Custom ptp reader

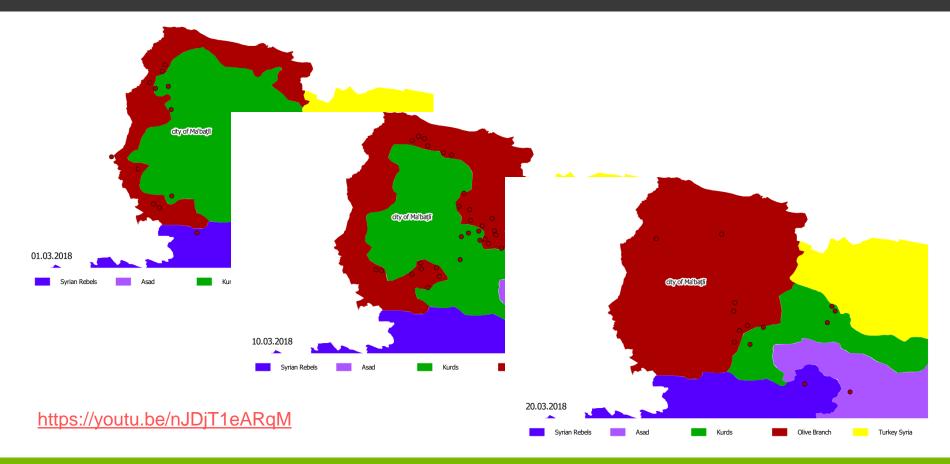


| 🔚 MO | VD_p | recisio | n.ptp 🔀 |      |   |   |     |            |            |
|------|------|---------|---------|------|---|---|-----|------------|------------|
| 1    | 06   | 395     | 74      | 428  | 5 | N | 4.5 | 500569.910 | 150189.590 |
| 2    | 06   | 395     | 73      | 428  | 5 | N | 4.5 | 500569.910 | 150189.590 |
| 3    | 06   | 395     | 73      | 443  | 5 | 0 | 4.4 | 500593.200 | 150176.990 |
| 4    | 06   | 395     | 73      | 482  | 5 | 0 | 4.4 | 500608.890 | 150225.440 |
| 5    | 06   | 395     | 73      | 8001 | 6 | N | 4.5 | 500585.337 | 150210.070 |
| 6    | 06   | 395     | 73      | 8002 | 6 | N | 4.5 | 500600.235 | 150200.969 |
| 7    | 06   | 395     | 73      | 8003 | 6 | N | 4.5 | 500603.730 | 150211.066 |
| 8    | 06   | 395     | 73      | 8004 | 6 | N | 4.5 | 500604.777 | 150225.602 |
| 9    | 06   | 395     | 73      | 8005 | 6 | N | 4.5 | 500605.382 | 150199.069 |
| 10   | 06   | 395     | 73      | 8007 | 6 | Ν | 4.5 | 500568.353 | 150190.871 |
| 11   | 06   | 395     | 73      | 8008 | _ | N | 4.5 | 500598.711 | 150174.427 |
| 12   | 02   | 395     | 73      | 8009 | 5 | 0 | 4.3 | 500612.757 | 150185.991 |
| 13   |      | 395     | 73      | 8010 | 5 | 0 | 4.4 | 500622.355 | 150185.812 |
| 14   | 02   | 395     | 73      | 8011 | _ | 0 | 4.3 | 500622.174 | 150176.064 |
| 15   | 02   | 395     | 73      | 8012 | 5 | 0 | 4.3 | 500612.575 | 150176.243 |
| 16   |      | 395     | 73      | 7013 |   | Ν | 4.5 | 500600.655 | 150173.519 |
| 17   |      | 395     | 73      | 7014 |   | N | 4.5 | 500604.990 | 150184.631 |
| 18   |      | 395     | 73      | 7015 |   | N | 4.5 | 500608.021 | 150185.679 |
| 19   |      | 395     | 73      | 8016 |   | N | 4.5 | 500612.749 | 150185.591 |
| 20   |      | 395     | 73      | 7017 |   | N | 4.5 | 500612.650 | 150180.242 |
| 21   |      | 395     | 73      | 7018 | 5 | N | 4.5 | 500609.650 | 150180.298 |
| 22   |      | 395     | 73      | 7019 |   | Ν | 4.5 | 500609.576 | 150176.299 |
| 23   | 02   | 395     | 73      | 7020 | 5 | N | 4.5 | 500606.989 | 150175.266 |



- Creation of FME features from a Python script
- Useful for e.g. formats not natively supported by FME or needing advanced pre-processing
- Script is called only once, but may return an arbitrary number of features
- Expects method close() to output all features using method pyoutput()

#### **Ex2 – Custom ptp reader**






Log into your computer  $\rightarrow$  Read the doc for exercise 2  $\rightarrow$  Follow the steps to finish the exercise

## Shutdown scripted Syria

#### Ex3 – Shutdown python script - Syria



# Ex3 – Shutdown python script - Syria

FME installs its own Python interpreter, but you may wish to use a different one.

#### Why would I want to choose a different Python Interpreter?

- **Arcpy** When creating a Python script for use with both FME and ArcGIS (for example) you could point FME to use the Python Interpreter installed by ArcGIS, to ensure both applications work.
- When you want to integrate FME with a **3rd-party Python package**.
- When you need to run a script in a **different version of Python** to that which FME installs, you will need to install that version separately and direct FME to use it.

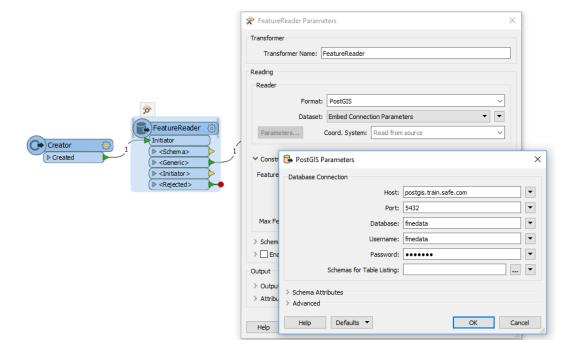
#### Ex3 – Shutdown python script - Syria



Log into your computer  $\rightarrow$  Read the doc for exercise 3  $\rightarrow$  Explore the FME workspace  $\rightarrow$  Follow the steps to finish the exercise

#### Scripted parameters

# DEM Digital elevation model


## Ex4 – Scripted parameters - DEM WINSER

Scripted parameters are extremely useful when we want to set a parameter in FME based on something we derived or calculated from another parameter or parameters.

For example you may want users to select themes or groups of layers and have your script set the individual feature types to read within these groups.

| Type:                 | Scripted (Python) | •                  |  |  |  |  |  |
|-----------------------|-------------------|--------------------|--|--|--|--|--|
| Name:                 | name              | Published Optional |  |  |  |  |  |
| Prompt:               | Python Script     |                    |  |  |  |  |  |
| Configuration:        |                   |                    |  |  |  |  |  |
| Attribute Assignment: | Default           | •                  |  |  |  |  |  |
| Value:                | return "ok"       | 🔻                  |  |  |  |  |  |
| Help                  | (                 | OK Cancel          |  |  |  |  |  |

## Ex4 – Scripted parameters - DEM WINSER



Working with parameters is mainly usefully when deploying one workspace in different environments (development env., test env., User acceptance testing env. production env.).

Paths and credentials can be easily adapted to the environment without changing the workspace.

#### Ex4 – Scripted parameters - DEM 💭 INSER



Log into your computer  $\rightarrow$  Read the doc for exercise 4  $\rightarrow$  Explore the FME workspace  $\rightarrow$  Follow the steps to finish the exercise